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ABSTRACT

Camera motion estimation is a key technique for 3D scene
reconstruction. Previous works usually assume slow cam-
era motions, which limit the usage in many real cases. We
propose an end-to-end 3D reconstruction system which com-
bines color, depth and inertial measurements to achieve ro-
bust reconstruction with fast sensor motions. Our framework
utilizes extended Kalman filter to fuse the three kinds of in-
formation and involve an iterative method to jointly optimize
feature correspondences, camera poses and scene geometry.
We also propose a novel geometry-aware patch deformation
technique to adapt the feature appearance in image domain,
leading to a more accurate feature matching under fast cam-
era motions. Experiments show that our patch deformation
method improves the accuracy of feature tracking, and our
3D reconstruction framework outperforms the state-of-the-art
solutions under fast camera motions.

Index Terms— 3D Reconstruction, Fast Motion, EKF,
IMU.

1. INTRODUCTION

With the development of capture and computation devices,
such as depth sensors and GPUs, real-time 3D reconstruction
has got rapid development. In recent years, a lot of works
have focused on indoor scene reconstruction. For example,
InfiniTAM [1] uses depth information to reconstruct 3D mod-
els, and estimate camera poses by an Iterative Closest Point
(ICP) algorithm [2]. However depth only methods are ex-
tremely brittle with large flat geometry, strong sun lights and
depth sensor noises. And they suffer error accumulation a lot.
In addition, drift-free camera tracking has got a breakthrough
in RGB-based methods, including direct methods [3] and fea-
ture point-based methods [4], but these approaches can not
reconstruct dense 3D geometry of a scene. BundleFusion [5],
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Fig. 1. Overview of our pipeline. The red, green and blue
arrows represent the input acquired from current frame, itera-
tive operation, and the patches from previous frame.

ElasticFusion [6] and some other methods [7, 8] use both
color and depth information to estimate camera motions and
dense geometries. Although these works exhibit reasonable
results, they still require strong assumptions, like static scene
without dynamic objects, sufficient texture and geometrical
information, slow camera motions and invariant illumination.
However, these assumptions can not be satisfied in many real
applications.

In this paper, we make a step further to handle fast cam-
era motions. For both color and depth, fast camera motion
leads to large inter-frame distance, which makes it difficult to
perform image feature matching and ICP based depth align-
ment. We solve the issue by introducing IMU information,
gathered by an accelerometer and a gyroscope. Further com-
bining with color and depth information, robust camera pose
estimation and geometry fusion of an indoor scene are jointly
achieved. The main contributions of our work are as follows:

(1) We present a RGB-D-inertial 3D reconstruction sys-
tem, which tightly combines the three kinds of information,
and jointly achieves camera pose estimation and patch defor-
mation in a Kalman filter framework.

(2) We present a geometry-aware feature tracking method
for handling fast camera motions, which utilizes patch fea-
tures to adapt blurry images and considers the deformation
of patches in building feature matching for images with very
different perspectives.



Fig. 2. This figure shows the patch SE effects caused by the
camera motion and the 3D shape of a patch.

2. METHOD

The pipeline of our system is illustrated in Fig. 1. We in-
troduce our method by the following three parts: geometry-
aware feature tracking which solves the SE (Shrink and Ex-
tend) effect and executes patch deformation, filtering frame-
work which explains the Kalman prediction and update steps,
and finally the model fusion and patch update.

2.1. Geometry-aware Feature Tracking

Point-based feature tracking methods [4] extracts an insuffi-
cient number of features when images are blurred or with less
texture. Thus, patch-based method, which considers larger
image regions, is used to track features under these condi-
tions [3]. However, large patches may contain objects with
different depths, which change patch appearances in consec-
utive frames when camera motion is fast, leading to inaccu-
rate feature tracking. To address this problem, we combine
color and depth information to back project 2D patches into
3D and re-project them to the camera of the next frame by
our initial camera motion. The projection helps to deform
the original patches to model the appearance changes, and the
patch tracking can be easily and accurately achieved by the
deformed patches.

2.1.1. SE effect and Patch Deformation

When camera moves, a feature patch will be seen from differ-
ent perspectives in different frames, and thus the 2D shape of
the feature patch in image domain vary from different frames.
To account for the patch deformation, different from Bloesch
et al. [9] which only considers the 2D planar information of a
patch, we use the 3D geometry of a patch to determine the 2D
shape deformation of the patches between consecutive images
recorded with fast camera motions.

Depending on different geometries of patches and irreg-
ularities of camera motions, patches may produce different
deformations in consecutive frames. Fig. 2 shows three rep-
resentative cases of patch deformations:

Fig. 3. Deformation process of SE patches. A 3 × 3 patch
with depth value d1, d2 is projected into a new frame, then we
detect the occlusion and reshape the projected patch.

Case 1. If there is no significant difference among pixel
depths in a patch, no matter how aggressive the camera mo-
tion is, the general shape of the patch will remain unchanged
in two consecutive frames.

Case 2. When camera moves slowly, the 2D shape of a
patch will still remain unchanged even though there are large
depth variances in the patch.

Case 3. Different from case 2, if camera moves aggres-
sively, the intensity distribution and the shape of the patch
will change. As shown in the right part of Fig. 2, if camera
moves from V0 to viewpoint V2, the yellow region will be
occluded and the patch shrinks in the frame of V2. In addi-
tion, the black region which is occluded in V0 is visible once
the camera moves to V1, and thus the patch shape extends in
the frame of V1. These phenomenons are called shrink and
extend effect, so we call them together by SE effect.

We designed a unified deformation method to handle the
SE effect. The details of patch deformation process are illus-
trated in Fig. 3 and formalized as follows. Each pixel i in
a patch extracted from frame k − 1 are defined as P k−1i :=
(pk−1i , Ik−1i , dk−1i ,nk−1i ), where pi denotes the image coor-
dinates of pixel i in the patch. Ii, di,ni denote the intensity,
depth and 3D normal of pixel i. di and ni are obtained from
the depth image. We first back project each patch into 3D
world coordinate system:

Li = Tk−1π−1(P k−1i ). (1)
Here, π(·) is to project a point from the 3D camera coordi-
nate system to 2D pixel domain, and π−1(·) represents the
inverse operation. Tk−1 is the camera pose of frame k − 1
which transforms a 3D point in the camera coordinate system
of frame k − 1 to the world coordinate system which is as-
signed to be the camera coordinate system of the first frame.
Thus Li is in the world coordinate system but is indexed from
a pixel i in frame k− 1, so Li := (Pi, Ik−1i ,ni) where the in-
tensity information does not change in the projection and Pi
and ni are in the world coordinate system. Then we project
Li to the pixel coordinate system of frame k.

P k
′

i = π(T−1k Li). (2)
Here ′ means it is projected to this frame, not originally from
this frame. Note that Tk is to be solved and affects the 2D
position of the projection.



After the projection, if two projected pixels in P k−1 hap-
pened to be in the same pixel coordinate in P k

′
, then we

consider the shrink effect occurs in this patch. This usually
happens when a region close to the camera covers the distant
region. Therefore we remove the pixels corresponding to the
distant region. Then we evaluate whether the extend effect
happens or not. We set the shape of the projected patch to
be the rectangle which covers all projected pixels. Then the
extend effect is verified by checking whether the height or
width of the projected patch is greater than the original one.
No matter which effect happens, we use P k

′
as the deformed

patch in the following feature tracking steps.

2.1.2. Objective

In feature tracking, patches affected by SE effect are replaced
with the corresponding newly projected patches. Then We
track the projected patch features by using both intensity and
depth information.

Photometric error for each projected patch is computed as
follows. We first extract the patch at the projected location of
the current image as P k, and then calculate the intensity dif-
ference between the extracted patch and the projected patch.
The photometric error can be formalized as:

Ep =

Y∑
i

∥∥∥I[P ki ] − I[P k
′

i ]
∥∥∥
2
, (3)

where Y denotes the number of pixels in the patch. I indicates
the corresponding intensity information of a patch. Then we
compute point-to-plane geometry errors as:

Eg =

Y∑
i

∥∥(P[Tk · π−1(P ki )] − P[Li]
)
· n[Li]

∥∥
2
. (4)

Given Ep and Eg , the cost function for patch tracking is for-
mulated as:

E(Tk) = λ

M∑
j

Ejp + (1 − λ)

M∑
j

Ejg , (5)

where j denotes the patch j, and M indicates the number of
patches.

2.2. Filtering Framework

Our extended Kalman fitering (EKF) framework aims to
tightly combine the color, depth and inertial measurements
information. To be specific, we model the camera pose of
each frame as the state of the EKF, and will solve it in the
EKF. The observation of the EKF include both the color and
depth images, and the relationship between the state and the
observation is measured by the energy defined in Equation 5.
If a state fits exactly to an observation, the energy is zero. On
the other hand, the inertial information is used in the Kalman
prediction step, which serves in building the motion predic-
tion model.

We follow the traditional Kalman filter to define the vari-
ables. A nonlinear discrete time system with state x, obser-
vation term z, process noise ω ∼ N(0,Q), and update noise

µ ∼ N(0,U) in the kth frame can be written as
xk = f(xk−1,ωk), (6)

zk = h(xk,µk). (7)

In our framework, the state of the filter is composed of
the following elements x : T = (R, t), with a 3 × 3 camera
rotation matrix R and a 3 × 1 camera translation vector t in
the world coordinate system. In the following, the superscript
symbol ’+’ denotes a-posteriori estimate of a variable calcu-
lated from the Kalman update step and ’−’ denotes a-prior
estimate from the Kalman prediction step.

2.2.1. Kalman Prediction and State Propagation

Given an a-posteriori estimate x+k−1 with covariance P+
k−1,

the prediction step of the EKF yields a-priori estimate at the
next frame:

x−k = f(x+k−1, 0), (8)

P−k = FkP+
k−1FTk + Qk, (9)

with the Jacobians:

Fk =
∂f

∂x

∣∣∣∣
x+k−1,0

. (10)

The key in the Kalman prediction step is to define the
function f . In our EKF framework, the inertial measure-
ments are employed in the definition. Following [10], we get
the actual sensor acceleration a and angular velocity w from
the inertial measurements. We assume that the IMU is syn-
chronized with the camera and acquires measurements with
time interval τ which is much smaller than that of the cam-
era. Hence, we denote N as the number of inertial measure-
ments acquired in two consecutive camera frames, and then
merge them together by a pre-integration method [11] to pre-
dict camera rotation ∆R and translation ∆t between two con-
secutive frames:

∆R = Φ ·
N∏
n=1

Exp(wn · τ) · Φ−1 (11)

∆v =

N∑
n=1

∆Rn · an · τ (12)

∆t = Φ ·
N∑
n=1

(∆vn · τ +
1

2
g · τ2 +

1

2
∆Rn · an · τ2). (13)

In the above three equations, the subscript ’n’ denotes the
corresponding variable at the nth IMU input in consecutive
frames. Besides, ∆v is the accumulated IMU linear velocity
from the previous camera frame to the current camera frame,
and Φ is the extrinsic matrix from the IMU coordinate to the
camera coordinate. g is the gravity acceleration, and Exp(·)
denotes the exponential map from Lie-algebra to Lie-group.
Details about this prediction step can be found in [10]. Fi-
nally, the states predicted in current frame k can be formu-
lated as:[

R−k t−k
0 1

]
=

[
∆Rk · R+

k−1 ∆tk + t+k−1
0 1

]
. (14)



2.2.2. Kalman Update and Iteration

In traditional extended Kalman update step, the measurement
residual is modeled as:

yk = zk − h(x−k , 0). (15)
Here, 0 means we directly use x−k to calculate the residual
without adding any Gausian noise. The updated state is for-
mulated as:

x+k = x−k + Kk · yk, (16)

where Kk is the Kalman gain. In our method, we defined the
residual as the photometric and geometric error of patches
(equation 5), thus the residual can be formulated as:

yk = 0 − E(T−k ) = −E
([

R−k t−k
0 1

])
. (17)

Notice that the deformations of the patches, which are used
in calculating yk by Equation 17, is heavily affected by the
camera poses. After we obtained an updated camera pose
by Equation 16, we use the newly updated camera pose to
iteratively calculate the deformations of the patches and refine
the camera poses by Equation 16 again. In this manner, we
can estimate a more accurate x+k . To be more specific, we use
m to denote the iterations, and thus we have:

h(x+k,m, 0) = E

([
R+
k,m t+k,m
0 1

])
, (18)

and the Kalman gain respecting to each iteration is:
Kk,m = P−k HT

k,mS−1k,m (19)

Sk,m = Hk,mP−k HT
k,m + Uk. (20)

As defined in the beginning of Section 2.2, Uk is the covari-
ance matrix of noise µk. And the Jacobians updated in every
iteration are formulated as:

Hk,m =
∂h

∂x

∣∣∣∣
x+k,m,0

(21)

Then the updated state of each iteration is calculated as fol-
lows:

x+k,m+1 = x+
k,m − Kk,m · h(x+

k,m, 0). (22)

Notice that x+k,0 is set to be x−k to initialize our computation.
Finally, the iteration is terminated when the absolute value of
Kk,m ·h(T+

k,m, 0) is below a certain threshold and the covari-
ance matrix is only updated once the process has converged
after η iterations:

P+
k = (I − Kk,ηHk,η)P−k (23)

2.3. Model Fusion and Patch Update

We use the volumetric TSDF [12] to incrementally fuse each
depth frame Dk into one 3D geometry model Mk(X), with the
associated camera pose R+

k , t
+
k . Details about depth fusion

can be found in [13].
After the reconstruction, we should update patch features

for the subsequent tracking. We exclude bad features by
comparing average intensity error of patches, and re-extract
square patch feature for those with non-square shapes affected

Fig. 4. This figure shows the feature tracking results of ours
and the direct method.

Table 1. Comparison of Patch Feature Tracking

Type Dataset
AIE

DM Ours

slow

TUM freiburg1 desk 13.3756 9.53

ICL NUIM lr kt2 4.8981 4.0825

Dorm slow 8.1312 7.8934

fast
ICL Fast Motion 17.219 7.8328

Dorm fast 13.9011 7.9325

by the SE effect. Then, we add new features with distinct in-
tensity gradient and sufficient depth information, evaluated by
the FAST corner detector [14] and the number of pixels with
available depth information. Finally, the intensity informa-
tion of patch features is updated by the current color image,
and the depth information is acquired from the 3D geometry
model which has better quality than the current depth image.

3. EXPERIMENTS

We first demonstrate the effectiveness of our geometry-aware
feature tracking method, which considers SE effect and de-
forms patches for accurate feature tracking in sequences with
fast camera motion. Then, we evaluate the benefits of inertial
information by comparing our system with and without IMU.
Finally, our 3D reconstruction method is compared against
the state-of-the-art systems in datasets with fast sensor mo-
tion.

3.1. Evaluation

Feature tracking. We compare our feature tracking method
against traditional direct method(DM) which does not take the
SE effect into consideration. We use a patch-size 10 × 10 in
both methods and extract no more than 100 patches in each
frame. Fig. 4 shows the tracking results of a patch feature



Fig. 5. The reconstruction results of a hotel room under slow
and fast camera motion.

in two consecutive frames. The tracking result of traditional
method is severely influenced by SE effect and get great in-
tensity error, while our method eliminating the influence by
deforming the patch and get smaller intensity error.

We compared on several datasets, including ICL
datasets[15, 16], TUM datasets[17] and our datasets gathered
by a hand-held sensor. The average intensity error (AIE) of
patches are listed in Table 1. All datasets are divided into slow
and fast depending on the quality of recorded images. To be
more specific, as there is no explicit criteria to divide camera
speed into slow and fast, thus we empirically set, based on
the unified characteristics of most public datasets, the motion
without creating image motion blur as slow camera motion,
and the motion which creates severe image blur as fast mo-
tion. From the table 1, we find that our method gets smaller
AIE in all datasets, especially in datasets with fast camera
motion.

IMU. To verify whether the integration of IMU helps to
reconstruct the scene geometry during fast camera motion, we
compare the results with and without IMU on two datasets
with slow and fast camera motions, respectively. As shown
in Fig. 5, on the dataset with slow camera motion, the sys-
tem without IMU works on-par with the complete system,
while it fails to reconstruct the model for fast camera motions.
Fig. 6 demonstrates the details of camera motions in the two
datasets. From the figure, we found there exists some sub-
sequences with large linear and angular velocities of camera
in the fast dataset. And the system without IMU will fail to
track camera poses during these sub-sequences. Notice that
other fast datasets used in our experiments also contain this
kinds of sub-sequences.

3.2. Comparison

We compare our 3D reconstruction systems with three pub-
lic state-of-the-art methods: InfiniTAM[1], a typical voxel
based scene reconstruction method, Bundlefusion[5] which
proposes an efficient global pose optimization algorithm, and
a surfel-based method ElasticFusion[6] which contains loop

Fig. 6. Camera linear and angular velocity of the two se-
quences used in IMU evaluation.

Fig. 7. Comparison of reconstruction with fast camera motion
in (a)InfiniTAM (b)ElasticFusion and (c)Ours.

closure and executes model refinement through non-rigid sur-
face deformations.

The results of sequence Dorm fast are exhibited in Fig. 7.
As BundleFusion fails once the camera speeds up and subse-
quently restarts when the camera slows down, thus we only
show its reconstruction process in our supplementary video.
From Fig. 7, we find that InfiniTAM can not maintain consis-
tency in the reconstructed geometry, which is mainly caused
by the inaccurate camera pose estimation and large accumu-
lated errors. Meanwhile, the loop closure function of Elas-
ticFusion, aiming to eliminate accumulated errors, is always
invalid in fast camera motion, and thus leads to the fail re-
construction of the parts shown with red and blue bounding
boxes. In the opposite, our system reconstructs a good geom-
etry of the scene even without loop closure.

We test our system on a laptop with Intel Core i7-7820HK
CPU at 2.9GHz, 32GB of RAM and GPU GeForce GTX 1080
with 8GB memory. The computation of our method is accel-
erated by GPU and runs on 45FPS.

4. CONCLUSION AND FUTURE WORK

We present a real-time system for indoor scene reconstruc-
tion by tightly-coupling RGB-D-Inertial information with an
extended Kalman filter, which estimates camera poses and re-
constructs 3D scene model with fast camera motions. In ad-



dition, we explore the SE effect caused by fast camera mo-
tions and handle it by a geometry-aware patch deformation
method. However, our system has not achieved loop closure
with fast camera motions. The reason is that the degraded im-
age information caused by fast camera motion, results in the
difficulties in loop closure detection.
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