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Figure 1: We present a real-time 3D gaze tracking method using a single consumer-level RGB camera, without the use of any infra-red
illuminators. The estimated 3D gaze target is visualized as a red point from two additional views, which are not used for actual tracking. Our
novel calibration method is “ground-truth position free”, allowing for deployment in a diverse array of application scenarios.

Abstract
3D gaze tracking from a single RGB camera is very challenging due to the lack of information in determining the accurate gaze
target from a monocular RGB sequence. The eyes tend to occupy only a small portion of the video, and even small errors in
estimated eye orientations can lead to very large errors in the triangulated gaze target. We overcome these difficulties with a
novel lightweight eyeball calibration scheme that determines the user-specific visual axis, eyeball size and position in the head.
Unlike the previous calibration techniques, we do not need the ground truth positions of the gaze points. In the online stage, gaze
is tracked by a new gaze fitting algorithm, and refined by a 3D gaze regression method to correct for bias errors. Our regression
is pre-trained on several individuals and works well for novel users. After the lightweight one-time user calibration, our method
operates in real time. Experiments show that our technique achieves state-of-the-art accuracy in gaze angle estimation, and we
demonstrate applications of 3D gaze target tracking and gaze retargeting to an animated 3D character.

CCS Concepts
• Human-centered computing → Interaction techniques; • Computing methodologies → Motion capture;

1. Introduction

Estimating the gaze direction of a user has important applica-
tions in human-computer interaction [FWT∗17], virtual and aug-
mented reality [PSK∗16], performance capture [WXY16], and
attention analysis [PSL∗16]. While recent advances have been
made towards estimating user gaze from monocular images alone
[WBZ∗15, KKK∗16], many of these systems are focused on deter-

mining the point of regard on a 2D display. This limits the utility
of such approaches to public display scenarios [ZCM∗15] or stud-
ies of aggregated attention over multiple people [SZB16, PLH17].
However, estimating 3D gaze, that is the exact location of the user’s
attention in arbitrary scenes, is a very challenging problem if only
2D images are available. Being able to estimate 3D gaze in real-
time would have important implications for robotics (e.g. human-
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robot collaboration [PRSS16]), computer graphics (e.g. foveated
rendering [PSK∗16], video editing [WBM∗18]), and HCI (e.g. gaze
typing [MWWM17], target selection in AR [KEP∗18]).

Estimating the position of a 3D gaze target is challenging
because it requires an accurate estimation of the user’s head-
pose, eye-ball location, and diameter and requires to estimate un-
observable, person-dependent features such as the interocular dis-
tance and the offset between the optical and visual axes. Clearly,
inferring all of these parameters from a single RGB image is chal-
lenging and so far this task does require the use of near-eye head-
mounted trackers [MBWK16,WLLA], or high-end eye trackers us-
ing machine-vision cameras [WKHA18].

Embracing these challenges we propose a novel model-fitting
based approach that leverages a lightweight calibration scheme in
order to track the 3D gaze of users in realtime and with relatively
high-accuracy. To achieve this we make several contributions. First,
to attain estimates of person-dependent parameters such as eye-
ball size and the offset of visual and optical axis, we propose a
lightweight calibration procedure. Our approach does not require
knowledge of the exact 3D position of gaze targets and only makes
the assumption that the user indeed fixates a target while moving
the head around to various positions and orientations.

Second, given the calibrated user parameters, we employ an
optimization-based model-fitting approach to estimate the gaze in
the current frame, taking into account the current head pose com-
puted from a sparse set of detected landmarks, and then optimizing
the 3D gaze via a photometric energy and a vergence constraint.
However, while this formulation allows for the estimation of 3D
gaze targets, we note that the accuracy of this approach is sensitive
to several factors including perspective foreshortening (an object
appears shorter than it actually is when angled towards the viewer).
These can systematically affect both the head pose and the gaze
angle estimates.

To compensate for these errors, our third contribution is a gaze
refinement technique that aims to remove systematic bias in the
gaze estimates. This correction can be formulated as a linear re-
gression problem that maps the current head pose and estimated
gaze angles to a gaze correction vector. Importantly, this mapping
can be computed offline from data captured via ground truth 3D
gaze targets from a multi-view detection of fiducial markers or from
calibrated monitors. The mapping is then applied at runtime in a
user-independent fashion and we experimentally show that it sig-
nificantly improves the gaze estimation accuracy.

We demonstrate the efficacy of our method via a prototypical
implementation of a real-time 3D gaze estimation system that takes
only 2D imagery as input and only relies on a simple calibration
routine for which the true 3D target positions do not need to be
known. We demonstrate our method on three different applications
in computer graphics: visualizing the 3D gaze target in a mixed
reality setting, applying the 3D gaze to a virtual CG character in
a performance capture scenario, and using the estimated 3D gaze
target point to drive the gaze of multiple characters in an augmented
reality application.

In summary, in this paper we contribute:

• A lightweight calibration method which does not require knowl-

edge of 3D positions of gaze targets, but only the groupings of
them per fixation, with variations in head pose.
• A model-based eye gaze tracker optimized with a vergence con-

straint which allows for 3D target tracking.
• A person-independent regression to refine model-fitting outputs

to yield 3.45◦ leave-one-out error on a self-collected dataset.
• A prototypical system running at interactive rates (28.6fps).

2. Related work

Traditionally much work on gaze estimation has often involved the
use of reflections (glints) from infra-red light sources [YKLC02,
YC05, GE08], coupled with a zoom lens [VC08, HF12], multi-
ple cameras [BBGB19,AGT15], or depth sensors [LL14,XLCZ14,
SLS15, WJ16, FMO16]. For a comprehensive overview of gaze es-
timation methods we refer the reader to [HJ09]. We consider eye
tracking in natural light scenarios in the absence of infra-red glints,
with just a single monocular RGB camera used as input.

Gaze Estimation with Calibration In contrast to feature-based
methods which suffer from poor extrapolation and restriction to
the screen-space [SVC12, HKN∗14], 3D model-based methods
promise to allow free head movements and better robustness, as
an understanding of the underlying 3D geometry can be applied.
Many approaches define a simplified eyeball model involving in-
tersecting spheres, where the gaze direction is defined as a ray orig-
inating from the center of a perfectly spherical eyeball, and going
through the pupil center (also known as the optical axis of the eye).
Such models allow for reasonable calibration-free gaze tracking
[YUYA08, WBZ∗15, WBM∗16a, WBM∗16b, WSXC16, WXY16,
WXLY17], and can be extended to consider a user-specific angu-
lar difference between optical axis and line-of-sight (visual axis) as
shown in [ME10, WJ17, WWJ16].

Required calibration samples for tuning a gaze estimator can
be acquired explicitly or implicitly. An explicit procedure requires
users to fixate on multiple points while measurements such as im-
ages of the eyes are collected. This arduous procedure can be sim-
plified to require only one calibration point but only with the help
of additional IR lights [GE08, VC08]. To reduce the burden on the
end-user, much work has been done in the implicit personal cal-
ibration of 3D model-based tracking methods, by leveraging pre-
dicted visual saliency of stimuli [CJ11, CJ14, SMS12], analysing
fixation maps [WWJ16], assuming binocular vergence on the used
display device [ME10] and comparison against prior human gaze
patterns on the same stimuli [AGVG13, LCS17]. These methods
make strong assumptions of users’ point of regards to certain stim-
uli (and thus may not generalize to new unseen stimuli or scenes),
limit the gaze tracking to a 2D display, or use additional hardware
(e.g. infra-red lights). In contrast, while our calibration scheme re-
quires users to fixate on points in 3D space, there is no restriction
on the target point position, and in particular we do not require
knowledge of the exact fixation point location, and hence users can
freely select easy-to-fixate stimuli or features. The ease of calibra-
tion does not come at significant cost to performance, with our cal-
ibrated eye tracking method being accurate and robust in particular
to head movement.

While neural network based approaches have recently been
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shown to perform particularly well on in-the-wild images
[ZSFB15, KKK∗16, ZSFB17, FCD18, PSH18, CLZ18, KRS∗19],
calibrating such methods with only few samples is challenging
due to their reliance on neural networks with large number of pa-
rameters. Therefore, even personalized appearance based methods
can suffer from relatively high errors in gaze [PZBH18,LYMO18],
making them less suitable for computer graphics applications. Our
method can outperform the current state-of-the-art in terms of an-
gular accuracy, and is both effective and lightweight, running in
real-time on a commodity CPU.

3D Point of Regard Estimation Given an accurate estimate of the
line-of-sight of two eyes and their positions in 3D space, the two
gaze rays are expected to intersect at a single point. The estima-
tion of such 3D Point-of-Regard (PoR) is especially challenging,
and thus far only performed with a high-end remote eye tracker
[WKHA18] or head-mounted eye trackers [MBWK16, WLLA,
MP08,TTTO14], in highly controlled settings. In addition, personal
gaze of a crowd of people can be aggragated to estimate the unique
target focused on by them [KKH∗18]. To the best of our knowl-
edge, we are the first to tackle the problem of 3D gaze target esti-
mation of one person when using just a single commodity webcam
as the input device. This is made possible by a binocular vergence
constraint in our optimization formulation, which ensures that the
gaze rays intersect in 3D space.

Eye Capture in Computer Graphics In the field of computer
graphics, one area of recent interest has been high quality cap-
ture of eye shape [BBN∗14, BBGB16], eyelids [BBK∗15], and
realistic data-driven eye rigging [BBGB19]. These methods aim
for extreme realism in the application of performance capture,
especially when coupled with robust face reconstruction meth-
ods [BBB∗10, BHB∗11, FHW∗11, FNH∗17]. However, the price
of hyper-realism comes at the cost of complex offline reconstruc-
tion and tracking algorithms and dedicated capture setups. Look-
ing more towards lightweight and real-time performance capture,
several methods have coupled real-time facial tracking with on-
line gaze estimation [WSXC16, WXY16], including real-time eye-
lid tracking [WXLY17]. Such applications are well suited for our
advanced eye tracking approach. Another interesting application
of eye capture is gaze editing in the scenario of video conferenc-
ing [KPB∗12, CSBT03] or video editing [WBM∗18]. Eye track-
ing is also important in the field of virtual reality [CKK19], where
head-mounted displays typically occlude a large portion of the
face and block important visual cues of where a user is looking.
Many solutions for in-display gaze tracking have been proposed,
and we refer to a recent survey of specialized devices [CAM18].
One example of tracking eyes in VR is gaze-aware facial re-
enactment [TZS∗18] (which has been subsequently also demon-
strated on human portraits re-enactment [TZT∗18]). Foveated ren-
dering [PSK∗16, WRK∗16] is another field that relies on accurate
gaze tracking, where computation cost is saved during image gen-
eration by synthesizing progressively less detail outside the eye fix-
ation region. Furthermore, analyzing gaze patterns can provide in-
sight into how users perceive 3D scenes [WKHA18] or television
and film content [BH17]. Our technique for accurate real-time 3D
gaze tracking could benefit all these methods including gaze edit-
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Figure 2: The simplified 3D eyeball model in our tracking system.
Left: geometry model. Right: binarized appearance model.

ing, mixed reality, performance capture, foveated rendering and at-
tention analysis.

3. Preliminaries

In this section, we introduce our proposed 3D eyeball model, which
is comprised of a geometric component describing the shape and
pose of the eyes as well as a photometric component describing
its appearance. In addition we introduce the two constraints em-
ployed for fitting the model to image data, both during the pro-
posed lightweight calibration to recover user specific eyeball pa-
rameters and during real-time 3D gaze tracking. The vergence con-
straint enforces the visual axes of the two eyes to intersect at a
desired fixation point thus forming a valid gaze, while the photo-
metric consistency constraint ensures that the appearance of the fit
model matches the target images.

3.1. Eyeball Model

Human eyes exhibit very complex anatomical structure and mo-
tion, as described previously in work focusing on highly accurate
modeling of eyes [BBN∗14, BBGB16] and the oculomotor sys-
tem [BBGB19]. To acquire such eye models they rely on a com-
plex capture setup and involved processing, both not suited for
our desired use-case of 3D gaze tracking from a single consumer
RGB camera in real time. We hence employ a simplified eyeball
model, comparable to previous model-based gaze tracking meth-
ods [WBM∗16a,WBM∗18,WSXC16,WXY16]. Then we add user-
specific geometry parameters to the eyeball model and use the ap-
proximate appearance model proposed in [WXY16]. Further more,
unlike previous work, we augment the model with a data-driven
correction mechanism aiming to alleviate some of the approxima-
tion errors.

Eyeball Geometry. As shown in Fig. 2 (left), we approximate
the shape of the eyeball with a sphere of radius r. The optical axis
~̀o of the eye is defined as the ray originating from the eyeball
center pe going through the center of the pupil pp, where pe and
pp are defined with respect to the coordinate frame of the head.
Without loss of generality, we define a local right-hand coordinate
frame with origin at the center of the eyeball, its y−axis pointing
upwards and the z−axis being collinear with the optical axis. Of-
tentimes, the optical axis is considered to correspond to the gaze
direction, but it is well understood in ophthalmology that the gaze
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Figure 3: Definitions of azimuthal angle κθ and polar angle κφ

which are used to model κ (the angular offset between optical axis
and visual axis).

direction is collinear with the visual axis ~̀v instead, which deviates
from the optical axis by κ degrees. While this angular offset typ-
ically is around 6 degrees in healthy eyes [AA11], it varies from
subject to subject. Following [BBGB19] we exploit the symme-
try of the eyes and model κ with a symmetric polar angle κφ and
an antisymmetric azimuthal angle κθ (defined in Fig. 3), reducing
the unknowns from four to two. The visual axis ~̀v = (pp,dv) is
defined to originate at the center of the pupil pp in the direction
dv = [±cosκφ sinκθ,sinκφ,cosκφ cosκθ]

T , where the first compo-
nent is positive for the right eye and negative for the left. The visual
axes (~̀L

v ,~̀
R
v ) from the left and right eyes intersect at the fixation

point pt , i.e. the point the person is looking at.

We approximate eye motion as simple rotation around a fixed
pivot, i.e. the center of the eye pe. Since we use a simplified ap-
pearance model as described below, we consider only left-right (θ)
and up-down (φ) rotation of the eye, and ignore rotation around the
optical axis known as torsion. Since the pivots of the left and right
eyes are selected relative to the coordinate frame of the head, which
is defined to exhibit the same orientation as the eyeball coordinate
frames when the eyes look forward (i.e. θ = 0 and φ = 0), the pose
of the eyeball relative to the head is fully described by a transforma-
tion matrix Teye = (R(θ,φ),pe), and premultiplying Teye with the
transformation of the head Thead relative to the world coordinate
frame yields the absolute pose of the eyeball. For convenience we
select our world coordinate frame to coincide with the coordinate
frame of the camera, since we employ only a single camera.

Eyeball Appearance. We employ an approximate appearance
model proposed by Wen et al. [WXY16], which offers a paramet-
ric description for the two most salient parts of the eye appearance,
namely the iris surrounded by the whitish sclera. As depicted in
Fig. 2 (right), the iris is approximated by a single circle centered at
pp and also encompasses the dark pupil. ψ is the angle between a
point on the edge of the circle and the optical axis. The intensities
of the iris (ciris) and sclera (csclera) are estimated from the image
data using a Gaussian mixture model. We select the mean of the
two largest Gaussians as csclera and ciris, assuming csclera > ciris,
i.e. the intensity of the sclera is assumed to be always brighter than
the intensity of the iris. Unlike the angle ψ, which is estimated dur-
ing calibration only, the two intensity values are updated at every
frame, and thus good generalization for eyeball appearance varia-

tions caused by different subjects, head poses and illumination con-
ditions can be achieved. With this parametric model, the intensity
c j at any given vertex j of the eye may be queried by evaluating by

c j =

{
csclera γ j > ψ

ciris γ j ≤ ψ
(1)

where γ j is the angle of the vertex j with respect to the optical axis.

3.2. Constraints

Vergence Constraint. Assuming the person is looking at a specific
point in space, the visual axes have to intersect at this point, which
imposes a strong constraint on the eye gaze which we refer to as
vergence constraint. The constraint is formulated as

‖TL
eye~̀

L
v ,T

R
eye~̀

R
v ‖2

v=0. (2)

The norm ‖~̀1,~̀2‖v measures the distance of the two rays ~̀1 and
~̀2 at their closest point and is defined as

‖~̀1,~̀2‖v =
|(o1−o2) · (d1×d2)|

|d1×d2|
, (3)

where ~̀ = (o,d), o is a point on the ray ~̀ (in our case, the pupil
center pp), and d is the direction away from the eyeball.

Photometric Consistency Constraint. When projecting the 3D
eye into the 2D image, the intensity c j of a vertex j should match
the image intensity at the projected location, and hence we formu-
late a photometric consistency constraint as

‖c j−I(π(TheadTeyex j))‖2
2=0, (4)

where x j denotes the 3D position of vertex j, π(·) denotes the pro-
jection operator, and I(·) samples the intensity of image I at the
provided location.

4. 3D Model-based Gaze Tracking

Gaze tracking aims to recover suitable eyeball parameters (Sec-
tion 3.1) from input imagery, leveraging the constraints defined
in Section 3.2. While some parameters, such as the eyeball rota-
tion defined by (θ,φ), might change over time and hence require
to be estimated continuously (Section 4.3), others remain fixed for
a given person and it is sufficient to estimate them once. We refer
to this initial estimation of all user-specific parameters as calibra-
tion, which aggregates information over a short period of time as
described in Section 4.2.

4.1. 3D Face Tracking

As a first step we need to recover the head pose Thead since our eye-
ball model is formulated relative to the head of the person. This is
achieved using established model-based facial tracking algorithms.
Specifically, we employ the system proposed by [CWZ∗13]. The
method employs a multilinear face model [CWZ∗13] in combina-
tion with a 2D facial landmark detector [Kin09] to jointly fit iden-
tity, expression, and pose parameters by minimizing the difference
between the detected 2D facial landmarks and the projected 3D fa-
cial landmarks. Since the 2D landmark detection takes place per
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frame, they tend to exhibit temporal noise, and hence we smooth
the head transforms temporally prior to eye gaze fitting. This is
achieved via a simple, constant motion model prediction of the cur-
rent head pose (rotation and translation), based on the two previous
head poses. The average of the predicted current pose and the pose
obtained by the tracker is used as the final head pose.

4.2. Lightweight Eyeball Calibration

In an initial calibration step, we ask the user to focus on a small
number of calibration target points in order to estimate the eyeball
radius r, eyeball centers pL,R

e , the angular shift between the optical
axis and the visual axis (κθ,κφ), and the iris angle ψ. These pa-
rameters are constant over all frames for a given person and will
be referred to as µ. In addition to these time-invariant parameters,
there is a set of time-varying parameters which we denote by τ,
namely the per frame eyeball rotations (θ,φ)L,R

f . Notice that the

colors (csclera,ciris)
L,R
f are also time varying parameters, but as they

are estimated by the method introduced in [WXY16], we do not in-
clude them in τ.

To perform calibration, most previous methods rely on known
calibration target points. This, however, is quite a strong require-
ment, since obtaining ground truth 3D points is a difficult task in
itself, especially in a monocular setting, and hence not suited for
unconstrained and user-friendly calibration. Instead, we propose a
much more convenient and less constrained calibration procedure,
where the user is asked to focus on a specific yet unknown point
in the scene and move his head around (rotate and translate) while
maintaining focus.

If the focus point remains constant over time, the visual axes of
both eyes for all frames have to intersect at the target location:

∑
f∈F

∑
f ′∈F

‖Thead, f TL
eye, f ~̀

L
v ,Thead, f ′T

R
eye, f ′~̀

R
v ‖2

v = 0, (5)

where F is the set of |F| frames. This equation can be considered
as an extension of the single frame vergence constraint in Eq. (2).

In practice, we are not limited to a single target point, but can
ask the user to sequentially focus onto a number of different scene
points Ω, yielding a set of frames Fω per target point ω ∈Ω. Com-
bined with the photometric consistency term defined in (4), the
overall energy to be minimized is defined as

argmin
µ,τ

∑
ω∈Ω

∑
f∈Fω

∑
j∈V f

‖c j−I f (π(Thead, f Teye, f x j))‖2
2

+λ ∑
ω∈Ω

∑
f∈Fω

∑
f ′∈Fω

‖Thead, f TL
eye, f ~̀

L
v ,Thead, f ′T

R
eye, f ′~̀

R
v ‖2

v ,
(6)

where we jointly minimize over both the set of time-invariant µ
and time-variant parameters τ. V f denotes the set of visible vertices
on the eyeball model at frame f (defined by the area enclosed by
2D eye landmarks detected in Section 4.1), and λ is a balancing
parameter set to 107 in our implementation.

4.3. Online 3D Gaze Tracking

Once calibrated, the time-invariant parameters µ are fixed and we
estimate the time-varying parameters τ for every frame f by mini-

a) b)
10
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Figure 4: Here we plot the errors relative to the left-right rotation
of the eye (θ) for four different subjects. a) Due to modeling and ap-
proximation errors, the residuals exhibit a systematic error, leading
to a slanted distribution. b) The proposed data-driven gaze correc-
tion attenuates the systematic error leading to a mostly zero-mean
distribution of the residuals.

mizing

argmin
τ

∑
j∈V f

‖c j−I f (π(Thead, f Teye, f x j))‖2
2

+λ‖TL
eye, f ~̀

L
v ,T

R
eye, f ~̀

R
v ‖2

v .

(7)

Once more, the energy is a composition of the vergence and photo-
metric consistency constraints introduced in Section 3.2.

4.4. Data-Driven Gaze Correction

Due to the approximations in our geometry and appearance model,
such as assuming a spherical eyeball without corneal bulge, the
gaze estimation is bound to exhibit systematic errors. This can be
observed in Fig. 4 (a). We propose to address this systematic error
via a data-driven correction scheme. To this end we employ a lin-
ear regression since it is stable, generalizes well and can be evalu-
ated with almost no overhead, which is important for the envisioned
real-time usecase. As depicted visually in Fig. 4 (b) and assessed
quantitatively in the next section, the proposed regression succeeds
at correcting for the systematic errors and as a consequence sub-
stantially improves the estimated gaze.

Our 3D gaze tracking technique relies heavily on the appear-
ance of the eyes in the images, especially the region around the
limbus [WXY16]. Due to the perspective projection model of a
pinhole camera, the projected 2D shape of the limbus is mainly
determined by the 3D pose of the eyeball relative to the camera.
This in turn, is essentially defined by the translation thead of the
head in conjunction with the eyeball rotation defined by the gaze
itself g = (θL,φL,θR,φR). We hence learn a linear mapping from
these seven-dimensional input features to a four-dimensional gaze
correction vector δ = (δθL ,δφL ,δθR ,δφR). This mapping is given by:

δ = A(thead ,g)
T +b, (8)

with A ∈ R4×7 and b ∈ R4.

We found that the data-driven gaze correction is largely user-
independent. This confirms our assumption that the observed, un-
corrected errors are due to modeling errors. This observation al-
lows us to train the regression offline, and to use it for entirely un-
seen users. Furthermore, given the simplicity of the model there
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is practically no overhead to the per user calibration introduced in
Section 4.2. In the next section, we provide a thorough analysis of
the proposed 3D gaze tracking technique and the data-driven gaze
correction strategy.

5. Results

In this section, we provide a thorough assessment of the two key
novelties presented in this paper, the lightweight calibration and
the data-driven gaze correction. We further assess the quality of
the overall system by comparing to a state-of-the-art CNN-based
method, trained and tested on the same data. Unlike prior art,
which typically reports errors on the estimated gaze angles only,
we also analyse the effectiveness of the proposed method for track-
ing points in 3D space, both quantitatively by reporting metric ac-
curacy and qualitatively by visualizing the tracked focus point on
the input videos. Lastly, we demonstrate retargeting of the captured
gaze onto 3D avatars hinting at usecases in the realm of VR or AR.

5.1. Setup

We use a consumer webcamera (Logitech C920) to capture 1080p
RGB images for both the eyeball calibration and the gaze track-
ing. 9 subjects (6 males and 3 females) participate in the experi-
ments. To calibrate the eyeball, each subject is asked to sequen-
tially fixate 4 target points displayed on a monitor while translat-
ing and rotating their head. For these points we do not know the
ground truth positions. To evaluate the system and to train the re-
gression, we displayed a grid of 5×3 target points on a monitor
for all the 9 subjects, and additionally positioned a floating tar-
get (a 2cm cube with AR markers) at various locations inside a
600mm×400mm×300mm volume for 3 of the subjects. For the
3D scene targets we measure ground truth positions using a cali-
brated multi-camera setup, and to measure the ground truth posi-
tions of the 2D screen targets we capture a mirror with marker tags
in multiple poses, again providing multi-view geometry in order to
triangulate the 2D scene targets in 3D. The head pose statistics in
our dataset are listed in Tab.1.

Table 1: Statistics of head translation (mm) and rotation (degrees)
in our dataset and [WJ17]. The head poses in our dataset are with
respect to the world space (i.e. camera space) and the mean and
standard deviation values are computed across all the 9 subjects.

Ours [WJ17]
Mean Std. Dev. Mean Std. Dev.

x 5.4 ± 94.9 -30.0 ± 32.0
y -45.1 ± 35.1 -11.0 ± 27.0
z 643.6 ± 52.4 525.0 ± 39.0

yaw -1.5 ± 16.5 3.0 ± 19.5
pitch 5.0 ± 5.8 2.8 ± 12.7
roll 1.9 ± 3.0 -82.0 ± 7.1

Performance We deployed our system on a computer with an
Intel Core i7-4790 CPU (3.6 GHz) and 32 GB memory. For each
input frame in the tracking stage, the optimizations for both fitting
the face and tracking the gaze are performed by the Ceres solver
[AMO]. The facial landmark detection takes about 6ms, the face
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Figure 5: Tracking errors of all 9 subjects with and without cali-
bration or regression modules. Blue: calibration-free tracking (av-
erage error: 8.45◦). Orange: tracking with user-specific eyeball pa-
rameters but without the gaze regression (average error: 4.21◦).
Grey: our full method (average error: 3.45◦). Yellow: a state-of-
the-art person-independent CNN baseline [FCD18] (average er-
ror: 4.55◦).
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Figure 6: Tracking errors of the evaluation targets relative to their
distances to the calibration center (the average position of the 4
calibration targets). Each color represents one subject.

fitting 12ms and the gaze tracking 17ms. The gaze regression adds
almost no overhead to the tracking pipeline (less than 1ms), as it is
a low-dimensional linear regression model. In general, our system
takes about 35ms for the gaze tracking in each frame.

5.2. Evaluation

Eyeball Calibration. First we evaluate the effectiveness of the pro-
posed lightweight eyeball calibration. To show the importance of
calibrating for user-specific eyeball parameters, we compare our
calibrated parameters with the average eyeball parameters of all the
9 subjects in gaze tracking. As shown in Fig. 5, calibration substan-
tially increases the quality of gaze tracking and reduces the overall
error by a factor of 2 from 8.45◦ to 4.21◦s on average.

In our calibration procedure, we use four calibration targets on
a screen arranged in a square with a diagonal of 200mm. It is to
be expected that accuracy will be highest within this square and
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Figure 7: Tracking errors of different regression inputs. Light blue:
without regression. Orange: the gaze of both eyes. Gray: head
translation only. Yellow: head translation and the gaze of one eye,
i.e each eye use its gaze separately. Dark blue: our full method,
head translation and the gaze of both eyes

degrade as the method starts to extrapolate. Fig. 6 validates this as-
sumption and demonstrates that accuracy is best within the square
(∼ 3.4◦) and degrades gracefully the further the targets are away
from the center of the calibration square. To improve the calibration
and the tracking for 3D, we can use calibration targets away from
the screen, for example by placing objects in front of the screen
without the need to know the exact 3D locations of them.

Data-driven Gaze Correction To assess the effectiveness and
the generality of the proposed linear gaze regression we train and
test several regressions in a leave-one-out manner. We train a re-
gressor using the evaluation data of 8 subjects and test its perfor-
mance on the evaluation data of the remaining subject. From Fig. 5,
we see that for all the subjects, the regression reduces the track-
ing errors noticeably (an average reduction of 0.76◦). Furthermore,
since the data of the left-out subject is not used in the training, the
experiments indicate good generalization behaviour and hence the
regression can be pre-trained once in an offline process and applied
to novel users.

We further evaluate the selection of the input features to the re-
gression in Fig. 7. As was to be expected, the gaze of the two eyes
plays the main role in the regression. Head translation cannot be
used in isolation to refine the tracking, but it helps significantly to
improve the performance in conjunction with the gaze. This sup-
ports our intuition that the pose of the eye relative to the camera is
critical since it defines the appearance of the eye in the imagery. In-
terestingly, regressing the eye gaze of the left and right eyes jointly
is very beneficial, presumably since gaze estimation is coupled via
the vergence constraint during tracking.

5.3. Comparison to Others

Our calibration method requires very little effort from the user, and
more importantly does not require any knowledge of the exact cal-
ibration point position. This allows for arbitrary targets in either
2D (screen) or 3D (space) to be selected by the user. Despite this
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Figure 8: Tracking errors of the 9 subjects using our full method
in terms of target errors. Gray: target errors. Yellow: target depth
errors along the visual axes.

flexibility, our approach yields better performance than a state-of-
the-art person-independent gaze estimator, which has significantly
higher model capacity. We demonstrate this by training the cur-
rent state-of-the-art architecture, the RT-GENE convolutional neu-
ral network (CNN) [FCD18] on our data, with pre-processing steps
following [ZSB18] † . We modify the network to share model pa-
rameters across the two eye image encoders, as we find that this
improves performance. The CNN is trained using the Adam opti-
mizer [KB14] with a learning rate of 5×10−4 and batch size of 64
for 50 epochs, with an exponential learning rate decay schedule ‡ .
The RT-GENE method evaluated is a single model (not ensembled),
where the learning parameters were tuned carefully to make the im-
plementation competitive. We show our results in Fig. 5 where our
method not only performs 24.2% better than the CNN method on
average, but also more consistently across subjects with a standard
deviation of 0.27◦ (vs 1.48◦ for the CNN method). We can see that
when evaluated on our evaluation dataset, our method is more ac-
curate and robust compared to the best performing learning-based
approach.

The most comparable and state-of-the-art model-based gaze-
estimation method to ours is that of [WJ17], which runs in real-time
and requires only a commodity RGB camera. They report 3.5◦ of
error over their 10 subjects, and we achieve 3.45◦ of error over our
9 subjects. Please note that we evaluate our method using a com-
pletely different dataset from [WJ17], although we try our best to
collect a dataset comparable with theirs (Tab. 1). In addition, their
approach is calibrated using known ground-truth calibration target
positions in 3D, while our light-weight calibration does not have
this requirement.

† We use [HR17] for face detection and [DZCZ18] for facial landmark
detection as this produces more consistent eye image patches.
‡ Decay with a multiplier of 0.1 every 15 epochs.
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Figure 9: Some frames selected from the gaze retargeting results.

Figure 10: Two frames selected from our augmented-reality appli-
cation.

5.4. Discussions and Applications

We now unpack the 3D gaze tracking capabilities of our method
and hint at potential applications via some qualitative results. Re-
sults in terms of 3D target accuracies are shown in Fig. 8, where
we achieve an average Euclidean error of 80.96mm. While this er-
ror is not neglible, please note that without our proposed vergence
constraint, the two eyes’ gaze rays are not guaranteed to converge
to a single 3D point at all, making this task impossible for exist-
ing learning-based approaches. Even small errors in estimating the
visual axis can lead to very large errors in the estimated depth or z-
value of the triangulated gaze target. Therefore, we further estimate
the depth error of the estimated gaze target along the gaze direction.
This z-error is shown in Fig. 8, where we can see that about 80% of
the target errors come from inaccurate depth estimation (67.03mm
on average in our experiments).

In addition, we show three sequence results in the supplementary
video: (a) visualizing the 3D gaze target, (b) applying the 3D gaze
to a virtual CG character in a performance capture scenario, and
(c) using the 3D target to drive the gaze of multiple 3D characters
in the same scene as the actor, demonstrating an augmented-reality
application. Some selected frames are shown in Fig. 1, Fig. 9 , and
Fig. 10 for (a), (b), and (c) respectively. In our 3D gaze target track-
ing sequences, we can see that despite the difficulty of the task, our
tracking works well albeit with some jitter. This is certainly ex-
aggerated by small fluctuations in the estimated gaze directions of
the two eyes, and the distance between eyeball and gaze target. For
the gaze retargeting result, the current automatic solution gives vi-
sually pleasing result which can serve as a good initialization for

animators to generate vivid facial animations. And the result can
be further refined following [DJL∗15, DJA∗16, DJS∗19] to avoid
exaggerated eye movements.

6. Future Work and Conclusions

In this paper we propose a 3D gaze estimation method that takes
only monocular images as input. However, the technique is not
without limitations and the method could be further improved. For
example, we noticed that the gaze error increases in frames with
poor eyelid detection accuracy or in frames where the iris is less
exposed than usually. Detecting and handling such cases explic-
itly would significantly improve overall accuracy and robustness.
A further interesting direction for future work would be a more
comprehensive dataset both for calibration (and potential training
of data-driven methods) and a set evaluation procedure for the novel
task of monocular 3D gaze estimation. However, collecting and la-
beling of such a dataset is beyond the scope of this paper.

In conclusion, in this paper we have proposed a real-time 3D
gaze tracking technique using a single RGB imagery only. First,
we propose a novel lightweight calibration method which accu-
rately estimates user-specific parameters. Compared to the tradi-
tional techniques, our method does not require known 3D positions
of the gaze targets for calibration, and thus can be performed by end
users. Furthermore, we propose an online gaze tracking method and
a linear regression to reduce systematic errors caused by modeling
assumptions. The system runs in real time and the regression cor-
rection can be trained once and applied to new users.

We show experimentally that our technique yields high-accuracy
in gaze estimation, comparable or better than state-of-the-art ap-
pearance based methods (which can not easily be modified to the
3D task). Finally, we demonstrate visual results on 3D gaze target
tracking and apply our technique to gaze retargeting with visually
pleasing results.
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